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FLOW OF A THIN FILM OF A VISCOUS LIQUID IN A GAS JET 

Yu. I. Abramov UDC 532.529.5 

An approximate formulation is considered for the steady-state wave flow of a 
thin film of viscous liquid subject to tangential frictional stresses at the 
boundary. Measurements have been made on the stability limit for droplet de- 
tachment, and it has been found that the detachment rate and fractional compo- 
sition of the droplets are dependent on the boundary conditions. 

Vapor--liquid and gas--liquid media are widely used in power systems and various engineer- 
ing devices, which has led to interest in flows of thin films of liquid at Refi = 5-400, 
which are characteristic of the natural conditions at the walls of equipment and the corres- 
ponding flow region with capillary waves on the surface [i]. 

There are papers [i, 2] on the basic laws of the wave motion of a thin film for flow in 
a constant field of mass forces, and these have been extended [3, 4]. However, the scheme 
used there did not have tangential frictional stresses at the free boundary of the film, so 
it was impossible to extend the conclusions and equations to the flow of a film in a gas jet, 
where the viscous interaction between the phases is responsible for tangential frictional 
stresses To at the interface. 

We consider the case where the film is acted on by a mass force strength j, while the 
surface is in a gas flow, with the gas pressure constant along the flow direction (3P"/3x = 
0); we assume that there is no heat or mass transfer in the wail--film-gas system, while To is 
taken as uniformly distributed over the film. 

Following [I], the current thickness of the film is specified as 

8 = 8o (1 + ~), ( l )  
where ~ is some function of the coordinate x and time t, which defines the deviation of the 
film thickness from the mean value ~o. 

We restrict consideration to steady-state wave flow, where any function of ~ satisfies 

aF (~) = - -  k aF (~) , 

a t  a x  ( 2 ) 

where k is the phase velocity of the waves. 

We also assume that 6Y% and a/% should be small. 

With these assumptions, the wave flow can be described by a system of equations consist- 
ing of the equation of motion in the Navier-Stokes form: 

a 4  . a,4 I 
at  +v'~-~x +v" av = - p '  

and the equation of continuity 

a (p'~') a8 
a x  at ' 

OP' ~' 
ax + ix + p, v2v'~ (3) 

(4) 

where 
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It follows from (2) and (4) that 

6 
~" = .[ v;d.y. 

o 

(k --5 ')  6 = c ,  (5) 

where C i s  some c o n s t a n t  d e t e r m i n e d  by the  f l ow  r a t e  i n  t h e  f i l m  and the  boundary  c o n d i t i o n s .  

One e x p e c t s  t h a t  t h e  mass f o r c e s  and p r e s s u r e  g r a d i e n t  w i l l  p roduce  a q u a d r a t i c  v e -  
l o c i t y  d i s t r i b u t i o n  in  t h e  Layer  f o r  a t h i n  f i l m ,  w h i l e  t h e  t a n g e n t i a l  f r i c t i o n a l  s t r e s s e s  
a t  t h e  f r e e  boundary  w i l l  p roduce  an a d d i t i o n a l  v e l o c i t y  p a t t e r n ,  which w i l l  be c l o s e  to 
l i n e a r .  T h e r e f o r e ,  t he  d i s t r i b u t i o n  of  t he  l o n g i t u d i n a l  v e l o c i t y  in  a l a y e r  w i t h  a f i l m  
f l o w i n g  under  t he  combined f o r c e s  can be pu t  as  

�9 3 (~, 1 ~o )(2g g2) ~o 
~ =  2 2 ~, 6 6 6~ + - ~ ' - Y "  

(6) 

' is proportional to the distance from the wall, We assume that the velocity component Vy 
i.e., 

-~- y6 6 " 

The normal component of the velocity at the boundary is 

d6 05 v" a6 
5 ~ -  d t -  aU- + ~6-$f , 

so from (2) and (6) we get the distribution for the normal component of the velocity as 

' =  ~ ' - -k -6  4 ~' 6 v - - - -  6 Ox (7) 

In  (6) we have o m i t t e d  s m a l l  t e rms  t h a t  i n c o r p o r a t e  the  e f f e c t s  on v~ from the  d e r i v a -  
t i v e  3~/3x,  and t h e r e f o r e  the  r e q u i r e m e n t  of  e q u a l i t y  f o r  t h e  t a n g e n t i a l  s t r e s s e s  a t  t he  
phase  i n t e r f a c e  w i t h  t h e  v e l o c i t y  d i s t r i b u t i o n  in  t he  f i l m  g i v e n  by (6) and (7) i s  obeyed 
o n l y  a p p r o x i m a t e l y .  

In  a g r a d i e n t - f r e e  gas f l o w ,  t h e  p r e s s u r e  g r a d i e n t  in  t he  l i q u i d  l a y e r  i s  s e t  up by 
s u r f a c e - t e n s i o n  f o r c e s  a r i s i n g  from t h e  c u r v a t u r e  of  t h e  s u r f a c e ,  and we can pu t  a p p r o x i -  
m a t e l y  

OP' a36 
_ _  - -  ( ~ - -  

Ox Ox ~ 

We integrate (3) over the thickness of the film for the velocity distribution given by 
(6) and (7) and use (2), (4), and (5) to convert to quantities averaged over the film thick- 
ness to get 

~' 6~ 026 [ 3 63 036 "6 k P' -6 kC6 § (k26 ~ - C D - 6  
p '  Ox3 - -  ax  2 _ 

(21  C - -  3 k6 3 ~o 6a/%~z 1 06 3 "to , '  
-6\4--0 10 40 ~' ] ~  J Ox- -~ ]~63 -6 2 p' 6~ -63 P' ( C - - k 6 ) = O .  

(8) 

The wave f u n c t i o n  ~ o f  (1) i s  i n t r o d u c e d  i n t o  (8 ) ,  w i t h  r e s t r i c t i o n  to  terms of  h i g h e r  
o r d e r ,  to  ge t  t he  f o l l o w i n g  e q u a t i o n  f o r  t he  wave s u r f a c e  o f  t he  f i l m  in  a f i r s t  a p p r o x i -  
ma t ion  : 

P'a 6~ 03(~u.~ q- [kC6o -6 -~0 (k"6~--C ~)-6( 21C " 3 k 6 ~  10 

403 ~o~, 80 ~ -~% 6~06o ~T+o~ 3 i~8~+-~r~~ 60~_ ks0 ~ + i~6~ +-- 
~t 

3 To 6~-6 3 (C- -kTo) - -O.  
2 p' -~- (8a) 
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The existence of a periodic solution to (8a) requires that the constant term should be 
zero, as should the coefficient @. These conditions give us equations for the constants k 

and C: 
L 

) k =  P' +1~8o ~o, C =  P' 2 p' + 8~. 
(9) 

For a given value of the flow rate qv and motion in the field of mass forces, the mean 
thickness of a film with a wave surface is seen from (9) to be 20% less than the thickness 
of a film with an unperturbed surface. The thicknesses of the perturbed and unperturbed 
films agree to a first approximation when the motion is produced by the frictional force of 

the gas flow. 

The stable periodic solution to (Sa) is 

~ = ~ s i n n x ,  (i0) 

where ~ = a/6o and n satisfies 

17 p' " OMo+ 3  o,O 

Expression (II) can be transformed with respect to the flow rate qv" 

0 it takes the form 

(ii) 

For the case To = 

9 p,2]~ 
n2 -- _ _  q,,, 

8 p/or 

and for the case Jx = 0 it is 

- -  2 9'  q~.5. 

The value of u can be found from the condition for energy stability of the wave flow 

[i]. For Jx = 0, e.g., the value of ~ is about 0.ii. 

We compare these approximate results with measurements for values of M for the gas flow 

in the range 0.10-0.95. 

The working part of the system was a horizontal channel of rectangular cross section 
containing a smooth plate supplied with liquid at ~he start via a slot of width 0.2 mm, which 
produced a thin water film. Aerodynamic knife edges of height 4 mm at the sides of the plate 
eliminated leakage over the sides, while absorbing slots made it possible to monitor the flow 

along the plate. 

Photography revealed the break-up of the wave pattern into individual parts, within each 
of which there was independent wave flow. The capillary waves had elevated steepness at the 
leading edge, which was due to higher harmonics [I], which were not incorporated in deriving 
(8a). The lengths of the capillary waves varied in each part and from one part to another, 
but on the whole the spread in % was random. The median wavelength was particularly prominent in 
stroboscopic visualization and agreed with the value found from ~ = 2~/n. 

Figure 1 compares the observed and calculated wavelengths. Here To was estimated from 
the classical equations for a single-phase boundary layer [5], while the wave surface was 
identified with a rough one. The roughness was taken as twice the amplitude of the capillary 
waves. The data of [2] were also in agreement with the calculation. 

On the whole, the good agreement over the wavelengths indicates that the equations from 
the approximate analysis are applicable to the linear characteristics under actual flow con- 

ditions. 

The small capillary waves were accompanied by large single waves with elevated phase 
velocities, which have been described elsewhere [2, 6]. 

At high gas speeds, the mechanical interaction was accompanied by detachment and trans- 
port of droplets of liquid. The picture of the droplet transport was analogous to that de- 

scribed in [7]. 
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Fig. i. Dependence of wavelength 
on flow rate qv and boundary con- 
ditions: i) water film in a gas 
jet; 2, 3) water and alcohol films, 
respectively, flowing under gravi- 
ty [2]; 4) calculation. ~ in mm 
and n in i/mm. 

The detached droplets moved in the comparatively narrow gas-droplet layer above the sur- 
face of the film, whose thickness increased in the flow direction. The mechanism of aerody- 
namic interaction between the droplets and the gas in this layer eliminated any repeated con- 
tact with the surface of the film. For example, if the film was drawn off through a slot, no 
film was seen to form in the subsequent parts of the plate, even for high droplet concentra- 
tions in the gas-droplet layer. 

These results indicate that the transport of water from the surface of the film is to be 
ascribed to turbulence in the gas layer above the film rather than to the hydrodynamics of 
the wave flow. The turbulent structure in the gas layer is also responsible to some extent 
for the initial deformation of the wave surface, whose further development is provided by 
molecular friction in the gas flowing over the deformed liquid. Therefore, any system of di- 
mensionless quantities that defines the stability limit for droplet transport must reflect 
explicitly or inexplicitly the state and mode of flow in the gas boundary layer. In that ap- 
proach, one automatically incorporates the initial flow conditions, which have been shown [6] 
to have a marked effect. 

We neglect the mass forces and follow the general rules of the theory of similarity and 
dimensions [8] to get the following system of primary dimensionless characteristics for the 
droplet transport stability: 

p"v"l p'v'l p"v"~t q~. p ' v  "~ v "  

~" ' ~ '  ' ~ ' v " l  ' p ' v  '~ ' v '  ' 

which can be reduced to the following system when the characteristic linear dimension I is 
taken as the thickness 6g of the gas boundary layer: 

( .) p"v"6g F"v" P"j ' ~" p,,v.2 0.5 R e  6 = ~" , F = , R~i~,  p ,v,~ v '  

~ =  6g ~'q.,  , a ' (12) 

with the three definitive criteria 6, Re~, and F, whose values are determined from the speed 
of the gas at the core of the gas flow. 

Figure 2 shows the stability limit as a function of the definitive criteria of (12). 
This is closely approximated by 

= 7 , 3 .  I 0  ~ R e~ ' 76F1 .97 .  ( 1 3 )  

Equation (13) gives an inexplicity relationship between the wave amplitude and the linear 
characteristics of the gas boundary layer for a state of the film critical as regards droplet 
transport. 

In the self-modeling region for the coefficient of friction at the boundary, the stabili- 
ty limit can be described by the simpler equation 
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Fig. 2. Stability limit for droplet production as a func- 
tion of the definitive criteria: i) experiment; 2) calcu- 
lation from (13). 

Fig. 3. Dependence of the stabilized loss coefficient 
Yc(i/m) on thel wavelength at the surface of the film: i) 
experiment; 2) calculation from (14). 

qv* = 63.5g p'cs 

Loss of liquid from the film is a consequence of the wave motion. The traveling wave 
acts as a piston that displaces liquid into parts of the gas boundary layer remote from the 
wall, where the perturbations and the gas velocity are sufficient to overcome the surface- 
tension forces, with the formation and detachment of droplets. 

If we introduce the transport coefficient y, which is defined as 

1 Oq~ ? - -  

q u  Ox 

and which characterizes the specific intensity of the transfer, then the mass transfer of 
liquid over a length l per unit width of flow is 

! 

M = p' ~ ? (x)q~dx.  
0 

The sources of the droplets are the ridges in the capillary waves, so it can be shown 
that the transfer rate should be proportional to the number of sources u, whose number is 
inversely proportional to the wavelength, i.e., u ~ i/h, as well as to the frequency of the 
wave oscillations on the surface f = k/% and the amount of liquid displaced by the traveling 
wave into the gas boundary layer during one period of oscillation over a length %, i.e., 

ap'6o~. 

With this relationship between the transport intensity and the film parameters, the co- 
efficient should satisfy 

= b/~, (14) 

where b is a coefficient of proportionality dependent on the state and parameters of the gas 
boundary layer. 

The experiment confirms (14), but only for flow rates in excess of some value qvc, which 
exceeds qv, by a factor 1.5-2.5 for the same conditions at the boundaries. In the range 

qv, < qv <qvc, Y decreases monotonically from y = Yc at qv ~ qvc to y = 0 at qv = qv," 

Figure 3 shows experimental data on the transport and calculation of (14). The value of 
b for an air-water mixture is 6.4.10 -~. 
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histogram for the droplet size distribution for v" = ii0 m/sec; 
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Practical interest is attached to the fractional composition of the droplets, as well as 
to methods of quantitative evaluation. 

Figure 4a gives a histogram for the size distribution, where the method of determination 
was described in [9] (n i is the number of droplets of size di• where Zn is the number of 
droplets in the sample). For flow rates qv>qvc, the form of the histogram is typical for the 
entire range of subsonic gas speeds. 

The results on the fractional composition and on the wave modes show that the group of 
droplets of large size, whose representative diameter is the median diameter d,, corresponds 
to loss from the ridges of the large single waves. The frequency of occurrence of these is 
much less than the frequency of surface oscillation on the fundamental, but the large ampli- 
tude means that there is considerable loss from the ridges of these waves. 

The group of droplets with median diameter d3 corresponds to loss from the ridges of 
the capillary waves at the fundamental. The groups with median diameters d: and d2 repre- 
sent secondary droplets formed correspondingly in loss from the large and small waves. 

The distribution over the sources is dependent on qv. In the region qv>qvc , the pre- 
dominant loss is from the ridges of the small capillary waves, which supply about 80% of 
the droplet liquid. In the region qv,<qv<qvc, the reduced amplitude of the wave surface 
means that there is an increased fractional representation of the droplets from the large 
single waves, which become the only source for qv~ qv,. 

This shift in the distribution between sources is the main reason why (14) is not obeyed 
in the region qv,<qv<qvc . 

The loss of droplets ~s due to the wave mode of flow, and one therefore takes the unit 
for the linear scale of the droplet formation as the wavelength X, while the median size~ 
may be related to the conditions at the boundary as some relationship between d/X and a di- 
mensionless quantity characterizing the relationship between the force fields acting on the 
film. 

As the wave amplitude is small even by comparison with the thickness of the viscous sub- 
layer, the resistance law for the deformed ridges can be taken as linear in the gas speed, and 
then the desired relationship is 

d _ ~  , 

(15) 

where 8 and m are experimental coefficients. 

TABLE i. Coefficients in (15) in Terms of Median 
Droplet Sizes 

Coeffi- 
cients 

m 

M'edian- ~droplet sizes 
dl d2 d8 d4 

0,5 
0,36 

0,5 
0,84 

I 

8,2 

1 

12,8 
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The experimental data were processed in this way as in Fig. 4b, while the values of 
and m given by the median droplet sizes are given in Table i. Figure 4 b shows that the 
size of the large droplets formed from the ridges of the capillary waves approximates to ~/2 
at high speeds. A similar conclusion has been drawn from the data of [7], where it was shown 
that the entire ridge of a capillary wave is involved in droplet formation at high speeds. 

NOTATION 

Refi , Reynolds number for film; p, density; v, velocity; P, pressure; ~, viscosity; M, 
Mach number; qv, volume flow rate per unit width; o, surface tension; a, wave amplitude; ~, 
wavelength; To, shear stress at free boundary; g, acceleration due to gravity, 9.81 m/sec2; 
y, coordinate normal to wall. Indices: ', liquid phase; ", gas phase; ~, free film boundary; 
*, critical state of the film with respect to drop entrainment. 
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